Back to Home
m2ux icon

concept-rag

Verified Safe

by m2ux

Overview

A RAG-based conceptual search system that transforms simple vector search into sophisticated conceptual search for document libraries.

Installation

Run Command
node dist/conceptual_index.js ~/.concept_rag

Environment Variables

  • OPENROUTER_API_KEY
  • DATABASE_URL
  • CATALOG_TABLE_NAME
  • CHUNKS_TABLE_NAME
  • CONCEPTS_TABLE_NAME
  • CATEGORIES_TABLE_NAME
  • OPENROUTER_SUMMARY_MODEL
  • OPENROUTER_CONCEPT_MODEL
  • EMBEDDING_PROVIDER
  • EMBEDDING_MODEL
  • EMBEDDING_DIMENSIONS
  • EMBEDDING_BATCH_SIZE
  • SEARCH_DEFAULT_LIMIT
  • SEARCH_MAX_LIMIT
  • SEARCH_WEIGHT_VECTOR
  • SEARCH_WEIGHT_BM25
  • SEARCH_WEIGHT_TITLE
  • SEARCH_WEIGHT_CONCEPT
  • SEARCH_WEIGHT_WORDNET
  • ENABLE_CACHING
  • CACHE_TTL_MS
  • PRELOAD_CACHES
  • LOG_LEVEL
  • DEBUG_SEARCH
  • ENABLE_TIMING
  • DEBUG_OCR

Security Notes

The server utilizes `child_process.spawn` and `execSync` for OCR (Tesseract) and WordNet lookups (Python script). Inputs to these external commands, such as PDF file paths and WordNet query terms, are sanitized for common injection patterns (e.g., quoting file paths, escaping string literals for Python). This mitigates basic command injection risks, as documented in ADRs (e.g., SQL injection prevention). However, sophisticated attack vectors against external process execution with user-derived inputs can be challenging to fully eliminate, requiring careful auditing of all input transformations. No direct `eval` or blatant obfuscation found.

Similar Servers

Stats

Interest Score30
Security Score7
Cost ClassHigh
Avg Tokens60000
Stars1
Forks0
Last Update2025-12-05

Tags

RAGVector SearchLLMKnowledge BaseSemantic Search