Back to Home
angrysky56 icon

reflective-agent-architecture

by angrysky56

Overview

A research prototype for a Reflective Agent Architecture (RAA) that integrates modern associative memory with metacognitive monitoring for insight-like problem-solving, capable of self-reflection and dynamic adaptation.

Installation

Run Command
python src/server.py

Environment Variables

  • EMBEDDING_PROVIDER
  • EMBEDDING_MODEL
  • OLLAMA_BASE_URL
  • LMSTUDIO_BASE_URL
  • LMSTUDIO_API_KEY
  • OPENROUTER_BASE_URL
  • OPENROUTER_API_KEY
  • OPENROUTER_SITE_URL
  • OPENROUTER_APP_NAME
  • LLM_PROVIDER
  • LLM_MODEL
  • OPENAI_API_KEY
  • OPENAI_BASE_URL
  • ANTHROPIC_API_KEY
  • GEMINI_API_KEY
  • HF_TOKEN
  • NEO4J_URI
  • NEO4J_USER
  • NEO4J_PASSWORD
  • COMPASS_MODEL
  • COMPASS_PROVIDER
  • MCP_CONFIG_PATH
  • LOG_LEVEL

Security Notes

Direct `subprocess.run` calls (e.g., in `_search_codebase`, `_run_mace4`) can be vulnerable to command injection if inputs are not thoroughly sanitized. The `exec` call within `src/compass/sandbox.py` is intended for sandboxing but represents an inherent risk point. The use of `torch.load(weights_only=False)` for loading model projections in `src/vectordb_migrate/migration.py` presents a deserialization vulnerability if untrusted projection files are inadvertently loaded. API keys are generally handled via environment variables, which is good practice.

Similar Servers

Stats

Interest Score17
Security Score4
Cost ClassHigh
Avg Tokens3000
Stars2
Forks1
Last Update2025-12-26

Tags

AI AgentMetacognitionAssociative MemoryHopfield NetworkTransformerGoal-Oriented AISelf-ReflectionVectorDB MigrationLLM IntegrationMulti-Modal IntelligenceNeo4jChromaDBTheorem Prover